IT&컴퓨터공학/딥러닝
정책이터레이션 코드
yan_z
2020. 12. 6. 20:53
environment.py
9,10,
32,33,34
70,71,72
100
158
217,218,219
수정
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
import tkinter as tk
from tkinter import Button
import time
import numpy as np
from PIL import ImageTk, Image
PhotoImage = ImageTk.PhotoImage
UNIT = 100 # 픽셀 수
HEIGHT = 5 # 그리드월드 세로
WIDTH = 5 # 그리드월드 가로
TRANSITION_PROB = 1 # 상태변환확률 : 1이므로 왼쪽으로 가는 행동을 하면 무조건 왼쪽으로 감
POSSIBLE_ACTIONS = [0, 1, 2, 3] # 상,하,좌,우
ACTIONS = [(-1, 0), (1, 0), (0, -1), (0, 1)] # 좌표로 나타낸 행동
REWARDS = []
class GraphicDisplay(tk.Tk):
def __init__(self, agent):
super(GraphicDisplay, self).__init__()
self.title('Policy Iteration')
self.geometry('{0}x{1}'.format(HEIGHT * UNIT, HEIGHT * UNIT + 50))
self.texts = []
self.arrows = []
self.env = Env()
self.agent = agent
self.evaluation_count = 0
self.improvement_count = 0
self.is_moving = 0
(self.up, self.down, self.left, self.right), self.shapes = self.load_images()
self.canvas = self._build_canvas()
self.text_reward(2, 2, "R : 1.0")
self.text_reward(1, 2, "R : -1.0")
self.text_reward(2, 1, "R : -1.0")
def _build_canvas(self):
canvas = tk.Canvas(self, bg='white',
height=HEIGHT * UNIT,
width=WIDTH * UNIT)
# 버튼 초기화
iteration_button = Button(self, text="Evaluate",
command=self.evaluate_policy)
iteration_button.configure(width=10, activebackground="#33B5E5")
canvas.create_window(WIDTH * UNIT * 0.13, HEIGHT * UNIT + 10,
window=iteration_button)
policy_button = Button(self, text="Improve",
command=self.improve_policy)
policy_button.configure(width=10, activebackground="#33B5E5")
canvas.create_window(WIDTH * UNIT * 0.37, HEIGHT * UNIT + 10,
window=policy_button)
policy_button = Button(self, text="move", command=self.move_by_policy)
policy_button.configure(width=10, activebackground="#33B5E5")
canvas.create_window(WIDTH * UNIT * 0.62, HEIGHT * UNIT + 10,
window=policy_button)
policy_button = Button(self, text="reset", command=self.reset)
policy_button.configure(width=10, activebackground="#33B5E5")
canvas.create_window(WIDTH * UNIT * 0.87, HEIGHT * UNIT + 10,
window=policy_button)
# 그리드 생성
for col in range(0, WIDTH * UNIT, UNIT): # 0~400 by 80
x0, y0, x1, y1 = col, 0, col, HEIGHT * UNIT
canvas.create_line(x0, y0, x1, y1)
for row in range(0, HEIGHT * UNIT, UNIT): # 0~400 by 80
x0, y0, x1, y1 = 0, row, HEIGHT * UNIT, row
canvas.create_line(x0, y0, x1, y1)
# 캔버스에 이미지 추가
self.rectangle = canvas.create_image(50, 50, image=self.shapes[0])
canvas.create_image(250, 150, image=self.shapes[1])
canvas.create_image(150, 250, image=self.shapes[1])
canvas.create_image(250, 250, image=self.shapes[2])
canvas.pack()
return canvas
def load_images(self):
up = PhotoImage(Image.open("../img/up.png").resize((13, 13)))
right = PhotoImage(Image.open("../img/right.png").resize((13, 13)))
left = PhotoImage(Image.open("../img/left.png").resize((13, 13)))
down = PhotoImage(Image.open("../img/down.png").resize((13, 13)))
rectangle = PhotoImage(Image.open("../img/rectangle.png").resize((65, 65)))
triangle = PhotoImage(Image.open("../img/triangle.png").resize((65, 65)))
circle = PhotoImage(Image.open("../img/circle.png").resize((65, 65)))
return (up, down, left, right), (rectangle, triangle, circle)
def reset(self):
if self.is_moving == 0:
self.evaluation_count = 0
self.improvement_count = 0
for i in self.texts:
self.canvas.delete(i)
for i in self.arrows:
self.canvas.delete(i)
self.agent.value_table = [[0.0] * WIDTH for _ in range(HEIGHT)]
self.agent.policy_table = ([[[0.25, 0.25, 0.25, 0.25]] * WIDTH
for _ in range(HEIGHT)])
self.agent.policy_table[2][2] = []
x, y = self.canvas.coords(self.rectangle)
self.canvas.move(self.rectangle, UNIT / 2 - x, UNIT / 2 - y)
def text_value(self, row, col, contents, font='Helvetica', size=10,
style='normal', anchor="nw"):
origin_x, origin_y = 85, 70
x, y = origin_y + (UNIT * col), origin_x + (UNIT * row)
font = (font, str(size), style)
text = self.canvas.create_text(x, y, fill="black", text=contents,
font=font, anchor=anchor)
return self.texts.append(text)
def text_reward(self, row, col, contents, font='Helvetica', size=10,
style='normal', anchor="nw"):
origin_x, origin_y = 5, 5
x, y = origin_y + (UNIT * col), origin_x + (UNIT * row)
font = (font, str(size), style)
text = self.canvas.create_text(x, y, fill="black", text=contents,
font=font, anchor=anchor)
return self.texts.append(text)
def rectangle_move(self, action):
base_action = np.array([0, 0])
location = self.find_rectangle()
self.render()
if action == 0 and location[0] > 0: # 상
base_action[1] -= UNIT
elif action == 1 and location[0] < HEIGHT - 1: # 하
base_action[1] += UNIT
elif action == 2 and location[1] > 0: # 좌
base_action[0] -= UNIT
elif action == 3 and location[1] < WIDTH - 1: # 우
base_action[0] += UNIT
# move agent
self.canvas.move(self.rectangle, base_action[0], base_action[1])
def find_rectangle(self):
temp = self.canvas.coords(self.rectangle)
x = (temp[0] / 100) - 0.5
y = (temp[1] / 100) - 0.5
return int(y), int(x)
def move_by_policy(self):
if self.improvement_count != 0 and self.is_moving != 1:
self.is_moving = 1
x, y = self.canvas.coords(self.rectangle)
self.canvas.move(self.rectangle, UNIT / 2 - x, UNIT / 2 - y)
x, y = self.find_rectangle()
while len(self.agent.policy_table[x][y]) != 0:
self.after(100,
self.rectangle_move(self.agent.get_action([x, y])))
x, y = self.find_rectangle()
self.is_moving = 0
def draw_one_arrow(self, col, row, policy):
if col == 2 and row == 2:
return
if policy[0] > 0: # up
origin_x, origin_y = 50 + (UNIT * row), 10 + (UNIT * col)
self.arrows.append(self.canvas.create_image(origin_x, origin_y,
image=self.up))
if policy[1] > 0: # down
origin_x, origin_y = 50 + (UNIT * row), 90 + (UNIT * col)
self.arrows.append(self.canvas.create_image(origin_x, origin_y,
image=self.down))
if policy[2] > 0: # left
origin_x, origin_y = 10 + (UNIT * row), 50 + (UNIT * col)
self.arrows.append(self.canvas.create_image(origin_x, origin_y,
image=self.left))
if policy[3] > 0: # right
origin_x, origin_y = 90 + (UNIT * row), 50 + (UNIT * col)
self.arrows.append(self.canvas.create_image(origin_x, origin_y,
image=self.right))
def draw_from_policy(self, policy_table):
for i in range(HEIGHT):
for j in range(WIDTH):
self.draw_one_arrow(i, j, policy_table[i][j])
def print_value_table(self, value_table):
for i in range(WIDTH):
for j in range(HEIGHT):
self.text_value(i, j, round(value_table[i][j], 2))
def render(self):
time.sleep(0.1)
self.canvas.tag_raise(self.rectangle)
self.update()
#evaluate 버튼 눌르면 실행되는 함수 = 정책평가
def evaluate_policy(self):
self.evaluation_count += 1
for i in self.texts:
self.canvas.delete(i)
self.agent.policy_evaluation()
self.print_value_table(self.agent.value_table)
# improve 버튼 눌르면 실행되는 함수 = 정책개선
def improve_policy(self):
self.improvement_count += 1
for i in self.arrows:
self.canvas.delete(i)
self.agent.policy_improvement()
self.draw_from_policy(self.agent.policy_table)
class Env:
def __init__(self):
self.transition_probability = TRANSITION_PROB # 상태변환확률
self.width = WIDTH #가로
self.height = HEIGHT #세로
self.reward = [[0] * WIDTH for _ in range(HEIGHT)]
self.possible_actions = POSSIBLE_ACTIONS
self.reward[2][2] = 1 # (2,2) 좌표 동그라미 위치에 보상 1 : 목적지
self.reward[1][2] = -1 # (1,2) 좌표 세모 위치에 보상 -1 : 장애물
self.reward[2][1] = -1 # (2,1) 좌표 세모 위치에 보상 -1 : 장애물
self.all_state = []
for x in range(WIDTH):
for y in range(HEIGHT):
state = [x, y]
self.all_state.append(state)
def get_reward(self, state, action): # 다음상태에서 받을 수 있는 보상계산
next_state = self.state_after_action(state, action) # 다음상태는 state_after_action 함수로 계산
return self.reward[next_state[0]][next_state[1]] #다음상태에서 받을 수 있는 보상 반환
def state_after_action(self, state, action_index): # 행동 후 어떤 state 인지
action = ACTIONS[action_index]
return self.check_boundary([state[0] + action[0], state[1] + action[1]])
@staticmethod # Env 객체를 생성하지않고 직접 사용이 가능
def check_boundary(state): # 바운더리 벗어나면 체크
state[0] = (0 if state[0] < 0 else WIDTH - 1
if state[0] > WIDTH - 1 else state[0])
state[1] = (0 if state[1] < 0 else HEIGHT - 1
if state[1] > HEIGHT - 1 else state[1])
return state
def get_transition_prob(self, state, action): #상태변환환률 반환하는함수
return self.transition_probability
def get_all_states(self): #모든 상태가져오는 함수
return self.all_state
|
cs |
policy_iteratation.py
15,
29,
49,
수정
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
import numpy as np
from environment import GraphicDisplay, Env
class PolicyIteration:
def __init__(self, env):
# 환경에 대한 객체 선언
self.env = env
# 가치함수를 2차원 리스트로 초기화
self.value_table = [[0.0] * env.width for _ in range(env.height)]
# 상 하 좌 우 동일한 확률로 정책 초기화
self.policy_table = [[[0.25, 0.25, 0.25, 0.25]] * env.width
for _ in range(env.height)]
# 마침 상태의 설정
self.policy_table[2][2] = []
# 할인율
self.discount_factor = 0.9
# 벨만 기대 방정식을 통해 다음 가치함수를 계산하는 정책 평가 ( 참 가치함수를 구하는 과정 )
def policy_evaluation(self):
# 다음 가치함수 초기화
next_value_table = [[0.00] * self.env.width
for _ in range(self.env.height)]
# 모든 상태에 대해서 벨만 기대방정식을 계산
for state in self.env.get_all_states():
value = 0.0
# 마침 상태의 가치 함수 = 0
if state == [2, 2]:
next_value_table[state[0]][state[1]] = value
continue
# 벨만 기대 방정식
for action in self.env.possible_actions: # 상,하,좌,우 행동에 대해서
next_state = self.env.state_after_action(state, action) # 해당 행동 시 다음상태
reward = self.env.get_reward(state, action) # 그때의 리워드
next_value = self.get_value(next_state) #이후 상태
value += (self.get_policy(state)[action] * #벨만 기대방정식 계산 ( 전부 더한다. max 가 아님 ! )
(reward + self.discount_factor * next_value))
next_value_table[state[0]][state[1]] = value #가치함수 update
self.value_table = next_value_table #가치함수 테이블 update
# 현재 가치 함수에 대해서 탐욕 정책 발전 ( 정책 update )
def policy_improvement(self):
next_policy = self.policy_table #정책 테이블을 가져오고
for state in self.env.get_all_states(): #모든 상태에 대해서
if state == [2, 2]:
continue
value_list = []
# 반환할 정책 초기화
result = [0.0, 0.0, 0.0, 0.0]
# 모든 행동에 대해서 [보상 + (할인율 * 다음 상태 가치함수)] = 큐함수 계산
for index, action in enumerate(self.env.possible_actions):
next_state = self.env.state_after_action(state, action) # 다음상태
reward = self.env.get_reward(state, action) #그때의 보상
next_value = self.get_value(next_state) #그때의 가치함수
value = reward + self.discount_factor * next_value
value_list.append(value) # 큐함수 append
# 받을 보상이 최대인 행동들에 대해 탐욕 정책 발전 ex) value_list =[3,1,3,2] 인 경우
max_idx_list = np.argwhere(value_list == np.amax(value_list)) # amax 하면 3, argwhere 하면 3인 인덱스 반환 => 구한 큐함수들 중에서 가장 큰 값을 가지는 값의 행동을 반환
max_idx_list = max_idx_list.flatten().tolist() # ex) [[0][2]] 인경우 => 1차원 리스트 [0,2] 로 변경
prob = 1 / len(max_idx_list) # 길이 2 므로 각각 확률은 0.5 ,0.5
for idx in max_idx_list:
result[idx] = prob
next_policy[state[0]][state[1]] = result #[0.5,0,0.5,0] 반환
self.policy_table = next_policy
# 특정 상태에서 정책에 따라 무작위로 행동을 반환
def get_action(self, state):
policy = self.get_policy(state)
policy = np.array(policy)
return np.random.choice(4, 1, p=policy)[0] # 정책을 고려해서 행동을 선택. 4= 행동의 개수, 1= 1개의 행동을 샘플링한다는 뜻 , 세번째 인자에는 정책을 넣음
# 상태에 따른 정책 반환
def get_policy(self, state):
return self.policy_table[state[0]][state[1]]
# 가치 함수의 값을 반환
def get_value(self, state):
return self.value_table[state[0]][state[1]]
if __name__ == "__main__":
env = Env()
policy_iteration = PolicyIteration(env)
grid_world = GraphicDisplay(policy_iteration)
grid_world.mainloop()
|
cs |